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The complex ac admittance of a thin film of carbon nanotube/polymer composites depending on both the
concentration and the alignment of nanotubes has been studied. The complex ac admittance and the current
intensity distribution is numerically calculated using a transfer matrix method, where the discretized mesh
model for nanotube/polymer composites is transformed into the RC network. The percolation threshold in-
creases with the degree of alignment of nanotubes. The vertical dc conductivity parallel to the alignment
direction has the maximum at a specific alignment, which is caused by competition between the number of
percolating paths and the degree of meandering of the current. Two extreme cases for the dc conductivity are
studied; the nanotube-resistance �NT�-limited case and the contact-resistance �CR�-limited case. CR-limited
conductivity has much stronger concentration dependence than NT-limited conductivity, since the number of
parallel connections of contact-resistors increases more strongly with the nanotube concentration than that of
nanotube resistors. The vertical static dielectric constant is enhanced near the percolation threshold and the
enhancement is significantly enlarged with the alignment of nanotubes, due to both the decrease in the number
of serial connections of minigap capacitors along the path of the imaginary current and the increase in the
number of paths.
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I. INTRODUCTION

Recently, conductor-insulator composite materials such as
metal-filled epoxy adhesives have been increasingly ex-
pected as a promising candidate to replace solder in micro-
electronics field. The properties of conductor-insulator com-
posites have been extensively studied in both experimental
and theoretical physics for many years.1 One of the main
theoretical models since 1970s has involved percolation
theory and the concept of scaling.2,3 Some powerful numeri-
cal methods to obtain the critical exponent near the percola-
tion threshold have been developed, such as a transfer-matrix
approach,4 a position-space renormalization group5 and effi-
cient Monte Carlo algorithm.6 Percolation theory has pre-
dicted a universal behavior of the electrical conductivity and
the dielectric properties, which does not depend on details of
the system but on the spatial dimension.

To reduce the percolation threshold, fine particles with a
high-aspect ratio have been expected as the filler.7 Indeed,
carbon-nanotubes-filled polymeric materials have been
shown as the conducting composite material with a very low-
percolation threshold.8–11 Homogeneous carbon nanotube/
polymer composites were fabricated using noncovalently
functionalized, soluble single-walled carbon nanotubes
�SWNTs� and they showed dramatic improvement in the
electrical conductivity with a very low percolation threshold
�0.05–0.1 wt % of SWNT loading�.8 Homogeneous com-
posites of SWNT/epoxy were also made by a high frequency
sonication method.9 The percolation threshold pc was found
to be 0.074 wt %. The electrically conductive carbon
nanotube/polymer composites have various applications such
as electromagnetic interference shielding and printable cir-
cuit wiring.8

Extensive experimental works have been performed for
the dc conductivity, dielectric constant and the ac conductiv-
ity for carbon nanotube/polymer composites. Both alternat-
ing current �ac� and direct current �dc� conductivities have
been measured for carbon nanotube/polymer thin films.12

The ac conductivity displayed two distinct regions, a
frequency-independent region at a lower frequency and a
frequency-dependent region at a higher frequency. The dc
conductivity � followed a percolation scaling law of �
=�0�p− pc�t with t=1.36 and the observed low value of �0 is
attributed to charge transport controlled by fluctuation-
induced tunneling between nanotubes. The scaling law of the
dc conductivity holds in a surprisingly wide range of reduced
volume fraction �p− pc� / pc, from 0.18 to 182 with pc
=0.055%. The similar scaling law with t=1.54 in a wide
range was also observed for single-walled carbon nanotube/
polystyrene composites, in a reduced mass fraction from 0.1
to 200.8 Wang et al. studied the dielectric properties of the
untreated multiwall carbon nanotube/poly vinylidene fluoride
composites.13 The low-frequency dielectric constant of a
composite becomes as high as 300 near the percolation
threshold and the value of dielectric loss is always less than
0.4 irrespective of the frequency in the insulating region. The
composites with high-dielectric constant have an application
to high-charge-storage capacitors. Giant dielectric constant
near a percolation threshold has also been observed in carbon
nanotube/rubber nanocomposites with low-percolation
threshold.14 At p=0.012%, the dielectric constant is about
250 and it is over 1000 when the volume fraction is 0.015%.
As for the dc conductivity, the best fits of the conductivity
data to the log-log plots of the power law give pc
=0.012�0.001% for the volume fraction and t=2.85�0.15,
which is larger than the universal value of 2.0 in 3D.1 Elec-
trical properties of percolative carbon nanofiber/polystyrene
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composites have also been studied and the scaling law with
t=1.3 and pc=1.71% for the volume fraction is observed.15

The dielectric constant can also be expressed by the power
law of �=�p�1− p / pc�−s, where �p is the dielectric constant of
the matrix. The experimental data are in good agreement
with pc=1.71% and s=0.9, and the dielectric constant over
200 is observed near the percolation threshold.

Percolation critical exponents for fine particles with a
high aspect ratio were calculated theoretically, for the first
time, in a two-dimensional �2D� system of randomly distrib-
uted conducting sticks.16 It has been shown that the corre-
sponding exponent, t, has the value of 1.24�0.03 for the
contact-resistance �CR�-limited conductivity. The authors
claim that the exponent t has the same value for the
nanotube-resistance �NT�-limited case within the “experi-
mental” uncertainty. Here, CR-limited or NT-limited conduc-
tivity is determined by the contact resistance between nano-
tubes or the nanotube resistance, respectively. The geometric
critical exponent � associated with the percolation probabil-
ity, i.e., the probability that metallic fillers belong to the con-
ducting network, was shown to have a value of 0.14�0.02.16

These results suggest that the 2D continuum system belongs
to the same universality class as the 2D lattice system in
which t=1.3 and �=5 /36=0.14 are known.1,17 Recently,
Monte Carlo simulation on the effective electrical conductiv-
ity of short-fiber composites has been performed for the NT-
limited case using randomly distributed three dimensional
cylinders.18 By discretizing the interconnected surfaces of
individual fibers, a finite element method was applied to
evaluate the equivalent electrical conductivity. Their result
indicates that the dc conductivity increases monotonically
with the decrease of the fiber orientation angle �, defined as
the angle between the fiber axis and the potential gradient. In
their calculations, both the fiber number and the ratio of the
fiber length to the simulation cell size are not sufficiently
large. The electrical properties of carbon nanotube/polymer
nanocomposites have also been studied using randomly dis-
tributed three-dimensional “soft-core” cylinders.19 They cal-
culated the NT-limited dc conductivity by transforming the
percolating network to a three-dimensional �3D� resistor net-
work. The ratio of the fiber length to the simulation cell size
was assumed as 5.0. The critical exponent t was identified as
1.8�0.05 independent of the aspect ratio. This value is con-
sistent with the universal value of 2.0 in 3D case.1

Recently, however, it has been suggested experimentally
that the universality does not hold for carbon nanofiber/
polyimide nanocomposites.20 As for the value of the critical
exponent t, it has been pointed out that the value of t depends
on both the range of the concentration and the transport
mechanism, that is, the contact-resistance-limited or the
nanotube-resistance-limited.21 Furthermore, it has been
shown that the percolation conductivity depends on align-
ment as well as concentration of nanotubes and both depen-
dences exhibit the critical power-law behavior.22 The vertical
dc conductance has a remarkable maximum at a specific
alignment. In the aligned case, strong anisotropy of the dc
conductance has also been confirmed. The reason why the dc
conductivity takes the remarkable maximum at a specific
alignment has not been clarified yet.

Our aim is to investigate the complex ac admittance of a
thin film of carbon nanotube/polymer composites and to re-

veal the dependences on both the concentration and the de-
gree of alignment of nanotubes, taking into account the con-
tact resistance between nanotubes. We calculate numerically
both the complex ac admittance and the current intensity
distribution by a transfer matrix method,4,24 by transforming
the discretized mesh model for a thin film of nanotube/
polymer composites into the RC network. As for the dc con-
ductivity, we study two extreme cases; the nanotube-
resistance �NT�-limited case and the contact-resistance �CR�-
limited case.

II. MODEL

We consider a 2D thin film of nanotube/polymer compos-
ites and calculate numerically both the complex ac admit-
tance and the current intensity distribution using the 2D RC
network in the discretized mesh model. In Fig. 1�a�, we
present schematically how a two-dimensional stick model for
a thin film of nanotube/polymer composites is discretized by
dividing the continuous area into a mesh and is transformed
to the RC network. Here, we assume the length of a nanotube
as l, the resistance between two ends of the nanotube as R
and the capacitance per square of polymers as C. The dis-
cretized mesh model is transformed to the RC network, by
assigning a resistor r=R /N for each bond along a nanotube
and a capacitor C for all the other bonds. Here, N is the total
number of bonds along a nanotube and N depends on the
alignment of each nanotube. The angle between the axis of a
nanotube and the vertical axis is set as �. The alignment of
nanotubes is characterized by the cutoff angle �� as � is
distributed uniformly within the cutoff angle.
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FIG. 1. �a� Schematic figure of a two-dimensional discretized
mesh model for a stick model in a continuous two-dimensional area
and its transformation to the RC network. �b� Extension of the 2D
discretized mesh model into the multilayer model to consider the
contact-resistance Rc between crossing nanotubes.
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We define the concentration n of nanotubes as the number of
nanotubes per l2. The center of nanotubes are distributed at
random in a square of L	L.

To consider the contact-resistance between nanotubes, we
extended the two-dimensional RC-network into the multilay-
ered RC network as shown in Fig. 1�b�. Here, we take the
contact resistance between nanotubes as Rc and all the other
connections between layers are assumed to have an infinite
resistance. In the superimposed layers, a resistor r=R /N is
assigned for each bond along the nanotube but all the other
lateral bonds within the layer are assumed to have an infinite
resistance.

We apply a transfer matrix method to calculate both the
complex ac admittance tensor Y and the current distribution
for the RC network.4,24 We can easily take into account the
effect of the displacement current through polymer in the
discretized mesh model. The transfer matrix method is ap-
propriate to treat the large lattice using the recursion formula.
In our computation, we avoided a lot of calculations of ma-

trix inversions which appear in the original formula,4 by add-
ing the resistor or the capacitor one by one to the RC net-
work. From the complex admittance tensor Y, the effective
conductance tensor �eff and the effective capacitance tensor
Ceff can be derived as,

Y = �eff + i
Ceff, �2�

where 
 is the angular frequency of ac current. Each element
of the complex admittance can also be written as Y
= �Y�exp�i�� and the dielectric loss can be calculated from
the dielectric constant � �C� as Im � /Re �=1 / tan �. In our
calculations, we assumed a constant dielectric constant for
the polymer and the effective capacitance Ceff has a constant
value at low frequencies.

In the numerical calculation, we assume the system size
of L=10l and the mesh size of �= l /20. We checked a finite
mesh-size effect on the dc conductivity in the isotropic case
for L=10l at three NT concentrations, nl2=6, 7 and 10. The
finite mesh-size effect becomes more remarkable as NT con-
centration decreases and approaches the percolation thresh-
old, and it always overestimates the conductivity. The effect
is significant at �= l /10 but it is greatly suppressed at �
= l /20 and becomes negligible at �= l /30. Computation at
�= l /30 was desirable but required a long CPU time, thus we
adopted a mesh size of �= l /20. We checked also a finite
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FIG. 2. Concentration dependence of �a� the vertical component
�v

eff and �b� the horizontal component �h
eff of the effective conduc-

tance for three values of ��. Here, three arrow- heads indicate the
percolation thresholds calculated in a continuous stick model �Ref.
23� for each alignment and the percolation threshold increases with
decrease of ��.
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cell-size effect on the dc conductivity at �= l /20 for three
NT concentrations, nl2=6, 10 and 15. The finite cell-size
effect also overestimates the conductivity, and its effect in-
creases as the NT concentration approaches the percolation
threshold. We adopted L=10l, because the calculated con-
ductivity at L=10l agrees with those at L=20l and 30l within
an accuracy of 10% for nl2=6. All the data are obtained by
taking the ensemble average over 100 samples. We set the
unit of the effective conductance �eff as 1 /R or 1 /Rc for the
nanotube-resistance-limited or the contact-resistance-limited
cases, respectively, and that of the effective capacitance as C.
We set also the unit of the angular frequency 
 as 1 /RC.

III. NUMERICAL RESULTS

First, we show in Fig. 2 the concentration dependence of
the dc conductance for three typical alignments of nanotubes
in the nanotube-resistance-limited case. It is seen that the
vertical dc conductance becomes larger than the horizontal
dc conductance with alignment of nanotubes. The percola-
tion threshold23 calculated in a continuous stick
model7,16,25,26 is also indicated by an arrow head for each
alignment in Fig. 2 and the percolation threshold increases
with decreasing ��. These calculated percolation thresholds

correspond well to the threshold of the horizontal dc conduc-
tance in Fig. 2�b�, but the percolation threshold is much
larger than the threshold of the vertical current at ��=20° in
Fig. 2�a�. This large deviation in the aligned case is caused
by a finite mesh-size effect and the effect becomes larger as
�� decreases. Recently, very accurate evaluation of the per-
colation threshold has been performed with a finite-size scal-
ing method for the isotropic stick percolation.27 In compari-
son to the result,27 the calculated percolation threshold23 has
an accuracy within 2%. In Fig. 3, we show the alignment
dependence of the dc conductance at fixed concentrations.
The horizontal dc conductance increases monotonically with
��, but the vertical dc conductance has a maximum at a
specific alignment ��max and ��max decreases as the concen-
tration, n, increases. The calculated behavior of the vertical
conductance is consistent to the experimental result.22

Second, we present in Fig. 4 the concentration depen-
dence of the effective capacitance �dielectric constant� for
three alignments in the nanotube-resistance-limited case. The
effective capacitance is remarkably enhanced near the perco-
lation threshold as observed by experiment.13,14 The en-
hancement of the vertical component is much larger than that
of the horizontal one in the aligned case and the enhance-
ment of the vertical capacitance is further enlarged as ��

decreases as seen in Fig. 4�a�. Hence, the vertical effective
capacitance becomes much larger than the horizontal effec-
tive capacitance for the aligned case. The deviation of the
concentration at the maximum of the capacitance from the
percolation threshold is due to the finite mesh-size effect as
mentioned before.

Third, we show in Fig. 5 the frequency dependence of the
effective conductance, the effective capacitance, the argu-
ment of the complex admittance, and the dielectric loss in the
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isotropic case. The effective conductance is constant at low
frequencies and increases monotonically at high frequencies
for metallic concentrations, although it decreases to zero
with decreasing frequency in the insulating region. On the
other hand, the effective capacitance decreases monotoni-
cally with the frequency for both metallic and insulating re-
gions, and they have constant values at high frequencies.
Corresponding to these behaviors, the argument of the com-
plex admittance increases monotonically from 0 to  /2 in
the metallic concentration, while in the insulating region it
has a value of  /2 in both low and high frequencies except
the frequency region around 
RC=1. Hence, the dielectric
loss decreases monotonically in the metallic concentration,
although it exhibits a small peak around 
RC=1 in the in-
sulating region. This behavior of the dielectric loss in the
insulating region agrees with the observed result.13

Finally, we calculate the dc conductance of the CR-
limited case and compare it with that of the NT-resistance-
limited case; the results are shown in Fig. 6 In both the
isotropic and the aligned cases, the CR-limited conductance
has a stronger concentration dependence in the range above
about 2nc, while they have similar dependence to the NT-
limited conductance in the range below about 2nc. In the
aligned case in Fig. 6�b�, both the vertical and the horizontal
conductances are plotted. To study the alignment dependence
of the CR-limited conductance, we plot in Fig. 7 the vertical

CR-limited conductance as a function of the cutoff angle ��,
with the NT-limited vertical conductance. The vertical CR-
limited conductance has a steeper decrease above the peak
cutoff angle than the NT-limited conductance, especially in
higher NT concentrations.

IV. DISCUSSION AND CONCLUSION

First, we discuss the reason why the vertical dc conduc-
tance has the maximum at a specific alignment. To reveal the
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origin, we calculate the intensity distribution of the vertical
current at n=15 for three alignments in Figs. 8�a�–8�c�. The
dc conductance has the maximum around ��=45° as seen in
Fig. 3 and the number of current paths decreases as �� de-
creases from 45°. As clearly seen in Figs. 8�a�–8�c�, the de-
gree of meandering increases as �� increases from 45°.
Hence, the dc conductance has the maximum around 45° at
n=15. On the other hand, the horizontal dc conductance in-
creases monotonically as �� increases as shown in Fig. 3,
and it is smaller than the vertical dc conductance in the
aligned case. The intensity distribution of the horizontal cur-
rent is also presented in Figs. 8�d�–8�f�. As �� increases, the
number of current paths increases and the degree of mean-
dering is also suppressed. Hence, the horizontal dc conduc-
tance increases monotonically with ��.

Next, in order to consider the reason why the enhance-
ment of the vertical effective capacitance near the percola-
tion threshold is enlarged by the alignment of nanotubes, we
calculate the intensity distribution of both the vertical and the
horizontal imaginary current at ��=30° in Fig. 9. A part of
the kink point in the current path corresponds to a mini-gap
between nanotubes. The number of current paths is larger
and the number of serial connections of a minigap capacitors

along each current path is smaller for the vertical imaginary
current than for the horizontal imaginary current. This means
the number of parallel connections of capacitors is larger and
the number of serial connections of the minigap capacitors is
smaller for the vertical imaginary current compared to the
horizontal current. Hence, the vertical effective capacitance
is much larger than the horizontal effective capacitance. Fur-
thermore, the number of the serial connections of minigap
capacitors decreases and the number of the parallel current
paths increases by decreasing ��. This is the origin of en-
larged vertical effective capacitance by alignment of nano-
tubes.

Third, we discuss the frequency dependence of the com-
plex admittance. The most remarkable feature of nanotube/
polymer composites is that the argument � of the complex
admittance in the metallic region increases in a monotonic
way from 0 to  /2, contrary to the random lattice system28,29

where � in the metallic region approaches to 0 in both low
and high frequencies. This means that the imaginary current
through capacitors becomes more dominant at higher fre-
quencies in comparison to the real current through nano-
tubes.

Finally, we discuss the difference between the concentra-
tion dependences of the nanotube-resistance-limited conduc-
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FIG. 9. Intensity distribution of the imaginary current in �a� the
vertical direction and �b� the horizontal direction, respectively. Here
n=7 and ��=30°.

0.1 1 10
(n-nc)/nc

0.1

1

10

100

0.1

1

10

100
t=1.37

t=1.08

t=0.78

t=0.71

(a) θμ=90°

0.1

1

10

100

0.1 1 10
(n-nc)/nc

0.1

1

10

100

0.98

t=1.31(b) θμ=45°

σ
eff(1/R)

σ
eff(1/R)

σe
ff
(1
/R
C
)

σ
ef
f (
1/
R C
)

1.31

1.08t=0.75

0.61
0.78

0.70

CR-limited
NT-limited

vertical

horizontal

NT
CR

NT
CR

FIG. 10. Comparison between the concentration dependence of
the nanotube limited conductance and the contact-resistance-limited
conductance in �a� the isotropic case of ��=90° and �b� the aligned
case of ��=45°, respectively, in the log-log plot. In the aligned
case, both the vertical and the horizontal conductances are plotted.
The best fitted power-law relations are also plotted with a broken
line near the percolation threshold and a solid line in a higher con-
centration range.

HAZAMA et al. PHYSICAL REVIEW B 82, 045204 �2010�

045204-6



tance and the contact-resistance-limited conductance. To es-
timate the critical exponent, we plot the dc conductance in
the log-log plot in Fig. 10. It is seen from Fig. 10 that the
critical exponent t has the same value independent of the
degree of alignment of nanotubes within the “experimental”
uncertainty. Furthermore, the critical exponents have the
same value for the vertical conductance and the horizontal
conductance in the aligned case. However, it clearly depends
on the resistivity mechanism, the NT-limited or the CR-
limited, contrary to the result by Balberg.16 In the concentra-
tion region higher than about 2nc, the CR-limited dc conduc-
tance has a concentration dependence with the critical
exponent of t�1.3 in agreement with the universal value of
t=1.3 in 2D case.3 However, the NT-limited conductance has
a smaller exponent of t�1.0. The reason for this difference
is considered to be similar root to that pointed out by Keb-
linski et al.21 If we double the intersecting two fibers in
parallel connection as all the four fibers intersect with each
other, the CR-limited conductivity quadruples while the NT-
limited conductivity doubles. This suggests that ��n for the
NT-limited conductance and ��n2 for the CR-limited con-
ductance. Indeed, the NT-limited conductance with t�1.0 in
Fig. 10 agrees well with this picture, but the CR-limited
result in Fig. 10 has a much smaller value of t�1.3 in com-
parison with 2. The exponent t has a smaller value in the low
concentration less than about 2nc. We cannot discuss this
concentration region at present, because both the finite mesh-
size effect and the finite cell-size effect cannot be neglected
in the vicinity of the percolation threshold.

In summary, we study the complex ac admittance of car-
bon nanotube/polymer composites and reveal the depen-
dences on both the concentration and the degree of alignment
of nanotubes. We calculate numerically both the complex
admittance and the current intensity distribution on the basis
of the 2D discretized mesh model, by applying a transfer

matrix method to the RC network. The percolation threshold
increases with the alignment of nanotubes. The vertical dc
conductivity parallel to the alignment direction has a maxi-
mum at a specific alignment, caused by competition between
the number of percolating paths and the degree of meander-
ing of the current path. As for the concentration dependence
of the dc conductivity, we study two extreme cases, namely,
the nanotube-resistance �NT�-limited case and the contact-
resistance �CR�-limited case. CR-limited conductivity has
the critical exponent of t�1.3, which is in agreement with
the universal value, and exhibits a little stronger concentra-
tion dependence than NT-limited conductivity above 2nc, be-
cause the practical number of the parallel connection of re-
sistors becomes larger for CR-limited conductivity. The
vertical static dielectric constant is enhanced near the perco-
lation threshold and the enhancement is enlarged by align-
ment of nanotubes, caused by both decrease of the number of
the serial connections of minigap capacitors and the increase
of the number of parallel paths of the imaginary current.

In a following paper,23 we reveal the dependence of the
percolation threshold on the alignment of nanotubes on the
basis of a continuous stick model. We use the continuous
model to reduce both effects of a finite mesh size in the
discretized mesh model and a finite cell size with a finite
ratio of the nanotube length to the simulation cell size. Fur-
thermore, we present the geometric critical exponent � and
show that the universality does not hold for nanotube/
polymer composites in 2D case.

ACKNOWLEDGMENTS

We acknowledge Shigeru Kohinata in Sumitomo Metal
Mining Co. for stimulating discussion on high frequency
conductance on conductive epoxy adhesive. This is a trigger
for this work.

*junj@ee.uec.ac.jp
1 D. J. Bergman, Solid State Phys. 46, 147 �1992�.
2 A. L. Efros and B. I. Shklovskii, Phys. Status Solidi 76, 475

�1976�.
3 D. J. Bergman and Y. Imry, Phys. Rev. Lett. 39, 1222 �1977�.
4 B. Derrida and J. Vannimenus, J. Phys. A 15, L557 �1982�.
5 D. Wilkinson, J. S. Langer, and P. N. Sen, Phys. Rev. B 28, 1081

�1983�.
6 M. E. J. Newman and R. M. Ziff, Phys. Rev. Lett. 85, 4104

�2000�.
7 I. Balberg, C. H. Anderson, S. Alexander, and N. Wagner, Phys.

Rev. B 30, 3933 �1984�.
8 R. Ramasubramaniam, J. Chen, and H. Liu, Appl. Phys. Lett.

83, 2928 �2003�.
9 B. Kim, J. Lee, and I. Yu, J. Appl. Phys. 94, 6724 �2003�.

10 M. Grujicic, G. Cao, and W. N. Roy, J. Mater. Sci. 39, 4441
�2004�.

11 M. Foygel, R. D. Morris, D. Anez, S. French, and V. L. Sobolev,
Phys. Rev. B 71, 104201 �2005�.

12 B. E. Kilbride, J. N. Coleman, J. Fraysse, P. Fournet, M. Cadek,

A. Drury, S. Hutzler, S. Roth, and W. J. Blau, J. Appl. Phys. 92,
4024 �2002�.

13 L. Wang and Z. Dang, Appl. Phys. Lett. 87, 042903 �2005�.
14 M. Jiang, Z. Dang, and H. Xu, Appl. Phys. Lett. 90, 042914

�2007�.
15 G. D. Liang and S. C. Tjong, IEEE Trans. Dielectr. Electr. Insul.

15, 214 �2008�.
16 I. Balberg, N. Binenbaum, and C. H. Anderson, Phys. Rev. Lett.

51, 1605 �1983�.
17 H. Gould and J. Tobochnik, An Introduction to Computer Simu-

lation Methods: Applications to Physical Systems �Addison-
Wesley, Reading, 1988�.

18 T. Zhang and Y. B. Yi, J. Appl. Phys. 103, 014910 �2008�.
19 N. Hu, Z. Masuda, C. Yan, G. Yamamoto, H. Fukunaga, and T.

Hashida, Nanotechnology 19, 215701 �2008�.
20 A. Trionfi, D. H. Wang, J. D. Jacobs, L. S. Tan, R. A. Vaia, and

J. W. P. Hsu, Phys. Rev. Lett. 102, 116601 �2009�.
21 P. Keblinski and F. Cleri, Phys. Rev. B 69, 184201 �2004�.
22 F. Du, J. E. Fischer, and K. I. Winey, Phys. Rev. B 72,

CONDUCTIVITY AND DIELECTRIC CONSTANT OF… PHYSICAL REVIEW B 82, 045204 �2010�

045204-7

http://dx.doi.org/10.1016/S0081-1947(08)60398-7
http://dx.doi.org/10.1002/pssb.2220760205
http://dx.doi.org/10.1002/pssb.2220760205
http://dx.doi.org/10.1103/PhysRevLett.39.1222
http://dx.doi.org/10.1088/0305-4470/15/10/007
http://dx.doi.org/10.1103/PhysRevB.28.1081
http://dx.doi.org/10.1103/PhysRevB.28.1081
http://dx.doi.org/10.1103/PhysRevLett.85.4104
http://dx.doi.org/10.1103/PhysRevLett.85.4104
http://dx.doi.org/10.1103/PhysRevB.30.3933
http://dx.doi.org/10.1103/PhysRevB.30.3933
http://dx.doi.org/10.1063/1.1616976
http://dx.doi.org/10.1063/1.1616976
http://dx.doi.org/10.1063/1.1622772
http://dx.doi.org/10.1023/B:JMSC.0000034136.11779.96
http://dx.doi.org/10.1023/B:JMSC.0000034136.11779.96
http://dx.doi.org/10.1103/PhysRevB.71.104201
http://dx.doi.org/10.1063/1.1506397
http://dx.doi.org/10.1063/1.1506397
http://dx.doi.org/10.1063/1.1996842
http://dx.doi.org/10.1063/1.2432232
http://dx.doi.org/10.1063/1.2432232
http://dx.doi.org/10.1109/T-DEI.2008.4446753
http://dx.doi.org/10.1109/T-DEI.2008.4446753
http://dx.doi.org/10.1103/PhysRevLett.51.1605
http://dx.doi.org/10.1103/PhysRevLett.51.1605
http://dx.doi.org/10.1063/1.2828180
http://dx.doi.org/10.1088/0957-4484/19/21/215701
http://dx.doi.org/10.1103/PhysRevLett.102.116601
http://dx.doi.org/10.1103/PhysRevB.69.184201
http://dx.doi.org/10.1103/PhysRevB.72.121404


121404�R� �2005�.
23 N. Ainoya, Y. Hazama, J. Nakamura, and A. Natori �unpub-

lished�.
24 D. J. Bergman, E. Duering, and M. Murat, J. Stat. Phys. 58, 1

�1990�.
25 G. E. Pike and C. H. Seager, Phys. Rev. B 10, 1421 �1974�.

26 I. Balberg and N. Binenbaum, Phys. Rev. B 28, 3799 �1983�.
27 J. Li and S.-L. Zhang, Phys. Rev. E 80, 040104�R� �2009�.
28 T. B. Murtanto, S. Natori, J. Nakamura, and A. Natori, Phys.

Rev. B 74, 115206 �2006�.
29 Y. Hazama, J. Nakamura, and A. Natori, J. Mater. Sci. 45, 2843

�2010�.

HAZAMA et al. PHYSICAL REVIEW B 82, 045204 �2010�

045204-8

http://dx.doi.org/10.1103/PhysRevB.72.121404
http://dx.doi.org/10.1007/BF01020283
http://dx.doi.org/10.1007/BF01020283
http://dx.doi.org/10.1103/PhysRevB.10.1421
http://dx.doi.org/10.1103/PhysRevB.28.3799
http://dx.doi.org/10.1103/PhysRevE.80.040104
http://dx.doi.org/10.1103/PhysRevB.74.115206
http://dx.doi.org/10.1103/PhysRevB.74.115206
http://dx.doi.org/10.1007/s10853-010-4224-y
http://dx.doi.org/10.1007/s10853-010-4224-y

